Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadk0024, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324688

RESUMO

The prevalence of computer vision systems necessitates hardware-based approaches to relieve the high computational demand of deep neural networks in resource-limited applications. One solution would be to off-load low-level image feature extraction, such as edge detection, from the digital network to the analog imaging system. To that end, this work demonstrates incoherent, broadband, low-noise optical edge detection of real-world scenes by combining the wavefront shaping of a 24-mm aperture metasurface with a refractive lens. An inverse design approach is used to optimize the metasurface for Laplacian-based edge detection across the 7.5- to 13.5-µm LWIR imaging band, allowing for facile integration with uncooled microbolometer-based LWIR imagers to encode edge information. A polarization multiplexed approach leveraging a birefringent metasurface is also demonstrated as a single-aperture implementation. This work could be applied to improve computer vision capabilities of resource-constrained systems by leveraging optical preprocessing to alleviate the computational requirements for high-accuracy image segmentation and classification.

2.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687985

RESUMO

Group IV alloys of GeSn have been extensively investigated as a competing material alternative in shortwave-to-mid-infrared photodetectors (PDs). The relatively large defect densities present in GeSn alloys are the major challenge in developing practical devices, owing to the low-temperature growth and lattice mismatch with Si or Ge substrates. In this paper, we comprehensively analyze the impact of defects on the performance of GeSn p-i-n homojunction PDs. We first present our theoretical models to calculate various contributing components of the dark current, including minority carrier diffusion in p- and n-regions, carrier generation-recombination in the active intrinsic region, and the tunneling effect. We then analyze the effect of defect density in the GeSn active region on carrier mobilities, scattering times, and the dark current. A higher defect density increases the dark current, resulting in a reduction in the detectivity of GeSn p-i-n PDs. In addition, at low Sn concentrations, defect-related dark current density is dominant, while the generation dark current becomes dominant at a higher Sn content. These results point to the importance of minimizing defect densities in the GeSn material growth and device processing, particularly for higher Sn compositions necessary to expand the cutoff wavelength to mid- and long-wave infrared regime. Moreover, a comparative study indicates that further improvement of the material quality and optimization of device structure reduces the dark current and thereby increases the detectivity. This study provides more realistic expectations and guidelines for evaluating GeSn p-i-n PDs as a competitor to the III-V- and II-VI-based infrared PDs currently on the commercial market.

3.
J Phys Chem Lett ; 14(6): 1379-1388, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36729066

RESUMO

Liquid-phase transmission electron microscopy (LP-TEM) enables one to directly visualize the formation of plasmonic nanoparticles and their postsynthetic modification, but the relative contributions of plasmonic hot electrons and radiolysis to metal precursor reduction remain unclear. Here we show silver deposition onto plasmonic gold nanorods (AuNRs) during LP-TEM is dominated by water radiolysis-induced chemical reduction. Silver was observed with LP-TEM to form bipyramidal shells at higher surfactant coverage and tip-preferential lobes at lower surfactant coverage. Ex situ silver photodeposition formed nanometer-thick shells on AuNRs with preferential deposition in inter-rod gaps, while chemical reduction deposited silver at AuNR tips at low surfactant coverage and formed pyramidal shells at higher surfactant coverage, consistent with LP-TEM. Silver deposition locations during LP-TEM were inconsistent with simulated near-field enhancement and hot electron generation hot spots. Collectively, the results indicate chemical reduction dominated during LP-TEM, indicating observation of plasmonic hot electron-induced photoreduction will necessitate suppression of radiolysis.

4.
ACS Nano ; 16(8): 12377-12389, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35894585

RESUMO

Understanding the nature of hot carrier pathways following surface plasmon excitation of heterometallic nanostructures and their mechanistic prevalence during photoelectrochemical oxidation of complex hydrocarbons, such as ethanol, remains challenging. This work studies the fate of carriers from Au nanorods before and after the presence of reductively photodeposited Pd at the single-particle level using scattering and emission spectroscopy, along with ensemble photoelectrochemical methods. A sub-2 nm epitaxial Pd0 shell was reductively grown onto colloidal Au nanorods via hot carriers generated from surface plasmon resonance excitation in the presence of [PdCl4]2-. These bimetallic Pd-Au nanorod architectures exhibited 14% quenched emission quantum yields and 9% augmented plasmon damping determined from their scattering spectra compared to the bare Au nanorods, consistent with injection/separation of intraband hot carriers into the Pd. Absorbed photon-to-current efficiency in photoelectrochemical ethanol oxidation was enhanced 50× from 0.00034% to 0.017% due to the photodeposited Pd. Photocurrent during ethanol oxidation improved 13× under solar-simulated AM1.5G and 40× for surface plasmon resonance-targeted irradiation conditions after photodepositing Pd, consistent with enhanced participation of intraband-excited sp-band holes and desorption of ethanol oxidation reaction intermediates owing to photothermal effects.

5.
ACS Omega ; 5(32): 20543-20547, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32832807

RESUMO

A robust and reliable method for enhancing the photoluminescence (PL) of multilayer MoS2 is demonstrated using an oxygen plasma treatment process followed by laser exposure. Here, the plasma and laser treatments result in an indirect-to-direct band gap transition. The oxygen plasma creates a slight decoupling of the layers and converts some of the MoS2 to MoO3. Subsequent laser irradiation further oxidizes the MoS2 to MoO3, as confirmed via X-ray photoelectron spectroscopy, and results in localized regions of brightly luminescent MoS2 monolayer triangular islands as seen in high-resolution transmission electron microscopy images. The PL lifetimes are found to decrease from 494 to 190 ps after plasma and laser treatment, reflecting the smaller size of the MoS2 grains/regions. Atomic force microscopic imaging shows a 2 nm increase in thickness of the laser-irradiated regions, which provides further evidence of the MoS2 being converted to MoO3.

6.
J Vis Exp ; (150)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31475988

RESUMO

A protocol is described to photocatalytically guide Pd deposition onto Au nanorods (AuNR) using surface plasmon resonance (SPR). Excited plasmonic hot electrons upon SPR irradiation drive reductive deposition of Pd on colloidal AuNR in the presence of [PdCl4]2-. Plasmon-driven reduction of secondary metals potentiates covalent, sub-wavelength deposition at targeted locations coinciding with electric field "hot-spots" of the plasmonic substrate using an external field (e.g., laser). The process described herein details a solution-phase deposition of a catalytically-active noble metal (Pd) from a transition metal halide salt (H2PdCl4) onto aqueously-suspended, anisotropic plasmonic structures (AuNR). The solution-phase process is amenable to making other bimetallic architectures. Transmission UV-vis monitoring of the photochemical reaction, coupled with ex situ XPS and statistical TEM analysis, provide immediate experimental feedback to evaluate properties of the bimetallic structures as they evolve during the photocatalytic reaction. Resonant plasmon irradiation of AuNR in the presence of [PdCl4]2- creates a thin, covalently-bound Pd0 shell without any significant dampening effect on its plasmonic behavior in this representative experiment/batch. Overall, plasmonic photodeposition offers an alternative route for high-volume, economical synthesis of optoelectronic materials with sub-5 nm features (e.g., heterometallic photocatalysts or optoelectronic interconnects).


Assuntos
Coloide de Ouro/química , Nanotubos/química , Paládio/química , Lasers , Processos Fotoquímicos , Ressonância de Plasmônio de Superfície
7.
Nanoscale ; 10(24): 11531-11543, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29892737

RESUMO

Embedding soft matter with nanoparticles (NPs) can provide electromagnetic tunability at sub-micron scales for a growing number of applications in healthcare, sustainable energy, and chemical processing. However, the use of NP-embedded soft material in temperature-sensitive applications has been constrained by difficulties in validating the prediction of rates for energy dissipation from thermally insulating to conducting behavior. This work improved the embedment of monodisperse NPs to stably decrease the inter-NP spacings in polydimethylsiloxane (PDMS) to nano-scale distances. Lumped-parameter and finite element analyses were refined to apportion the effects of the structure and composition of the NP-embedded soft polymer on the rates for conductive, convective, and radiative heat dissipation. These advances allowed for the rational selection of PDMS size and NP composition to optimize measured rates of internal (conductive) and external (convective and radiative) heat dissipation. Stably reducing the distance between monodisperse NPs to nano-scale intervals increased the overall heat dissipation rate by up to 29%. Refined fabrication of NP-embedded polymer enabled the tunability of the dynamic thermal response (the ratio of internal to external dissipation rate) by a factor of 3.1 to achieve a value of 0.091, the largest reported to date. Heat dissipation rates simulated a priori were consistent with 130 µm resolution thermal images across 2- to 15-fold changes in the geometry and composition of NP-PDMS. The Nusselt number was observed to increase with the fourth root of the Rayleigh number across thermally insulative and conductive regimes, further validating the approach. These developments support the model-informed design of soft media embedded with nano-scale-spaced NPs to optimize the heat dissipation rates for evolving temperature-sensitive diagnostic and therapeutic modalities, as well as emerging uses in flexible bioelectronics, cell and tissue culture, and solar-thermal heating.

8.
Opt Lett ; 43(10): 2400-2401, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762602

RESUMO

This erratum corrects errors in the expressions for ⟨ßTMD⟩ and fitted form of IHRS and a consequent data point in Fig. 4 of a recent Letter [Opt. Lett.42, 5018 (2017)OPLEDP0146-959210.1364/OL.42.005018]. It also supplies data for the reference compound para-nitroaniline (pNA). The correction to ⟨ßTMD⟩ improves experimental agreement from 46% to within 21% of independent scissors-corrected density functional theory (DFT) calculations. Central findings from the original Letter remain intact.

9.
Opt Lett ; 42(23): 5018-5021, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216169

RESUMO

Hyper Rayleigh scattering (HRS) was used to measure the second-order nonlinear susceptibility, χ(2), for liquid exfoliated WS2 monolayers. To the best of our knowledge, it is the first reported application of the HRS technique to assess the bulk-like χ(2) of a two-dimensional (2D) material. The concentration-dependent HRS signal indicated a 4.90±0.30×10-25 esu first hyperpolarizability for 42 nm WS2 monolayers under 1064 nm laser irradiation using para-nitroaniline as an external reference. The corresponding value of χxxx(2) was calculated to be 460±28 pm V-1. This was within 46% of independent density functional theory predictions. Agreement with theory was improved over related microscopy-based approaches. These results support the use of HRS to evaluate 2D materials for nonlinear frequency mixing applications.

10.
Opt Express ; 22(15): 17791-803, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089400

RESUMO

Lattices of plasmonic nanorings with particular geometries exhibit singular, tunable resonance features in the infrared. This work examined effects of nanoring inner radius, wall thickness, and lattice constant on the spectral response of single nanorings and in Fano resonant square lattices, combining use of the discrete and coupled dipole approximations. Increasing nanoring inner radius red-shifted and broadened the localized surface plasmon resonance (LSPR), while wall thickness modulated the LSPR wavelength and decreased absorption relative to scattering. The square lattice constant was tuned to observe diffractively-coupled lattice resonances, which increased resonant extinction 4.3-fold over the single-ring LSPR through Fano resonance. Refractive index sensitivities of 760 and 1075 nm RIU(-1) were computed for the plasmon and lattice resonances of an optimized nanoring lattice. Sensitivity of an optimal nanoring lattice to a local change in dielectric, useful for sensing applications, was 4 to 5 times higher than for isolated nanorings or non-coupling arrays. This was attributable to the Fano line-shape in far-field diffractive coupling with near-field LSPR.

11.
Appl Opt ; 52(25): 6417-27, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085105

RESUMO

Plasmonic nanostructures enable microscopic optical manipulation such as light trapping in photonic devices. However, integration of embedded nanostructures into photonic devices has been limited by tractability of nanoscale and microscale descriptions in device architectures. This work uses a linear algebraic model to distinguish geometric optical responses of nanoparticles integrated into dielectric substrates interacting with macroscopic back-reflectors from absorptive and nonlinear plasmonic effects. Measured transmission, reflection, and attenuation (losses) from ceramic and polymer composites supporting two- and three-dimensional distributions of gold nanoparticles, respectively, are predictable using the model. A unique equilateral display format correlates geometric optical behavior and attenuation to nanoparticle density and back-reflector opacity, allowing intuitive, visual specification of density and opacity necessary to obtain a particular optical performance. The model and display format are useful for facile design and integration of plasmonic nanostructures into photonic devices for light manipulation.

12.
ACS Appl Mater Interfaces ; 5(17): 8457-66, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23931658

RESUMO

Polymer thin films containing gold nanoparticles (AuNPs) are of growing interest in photovoltaics, biomedicine, optics, and nanoelectromechanical systems (NEMs). This work has identified conditions to rapidly reduce aqueous hydrogen tetrachloroaurate (TCA) that is diffusing into one exposed interface of a partially cured polydimethylsiloxane (PDMS) thin film into AuNPs. Nanospheroids, irregular gold (Au) networks, and micrometer-sized Au conglomerates were formed in a ∼5 µm layer at dissolved TCA contents of 0.005, 0.05, and 0.5 mass percent, respectively. Multiscale morphological, optical, and thermal properties of the resulting asymmetric AuNP-PDMS thin films were characterized. Reduction of TCA diffusing into the interface of partially cured PDMS film increased AuNP content, robustness, and scalability relative to laminar preparation of asymmetric AuNP-PDMS thin films. Optical attenuation and thermoplasmonic film temperature due to incident resonant irradiation increased in linear proportion to the order of magnitude increases in TCA content, from 0.005 to 0.05 to 0.5 mass percent. At the highest TCA content (0.05 mass percent), an asymmetric PDMS film 52-µm-thick with a 7 µm AuNP-containing layer was produced. It attenuated 85% of 18 mW of incident radiation and raised the local temperature to 54.5 °C above ambient. This represented an increase of 3 to 230-fold in photon-to-heat efficiency over previous thermoplasmonic AuNP-containing systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...